Source code for composer.algorithms.sam.sam

# Copyright 2022 MosaicML Composer authors
# SPDX-License-Identifier: Apache-2.0

"""SAM algorithm and optimizer class."""

from __future__ import annotations

import logging
import warnings
from typing import Optional

import torch

from composer.core import Algorithm, Event, State
from composer.loggers import Logger
from composer.trainer._scaler import ClosureGradScaler
from composer.utils import ensure_tuple

log = logging.getLogger(__name__)

__all__ = ['SAM', 'SAMOptimizer']


class SAMOptimizer(torch.optim.Optimizer):
    """Wraps an optimizer with sharpness-aware minimization (`Foret et al, 2020 <https://arxiv.org/abs/2010.01412>`_).
    See :class:`.SAM` for details.

    Implementation based on https://github.com/davda54/sam

    Args:
        base_optimizer (torch.optim.Optimizer) The optimizer to apply SAM to.
        rho (float, optional): The SAM neighborhood size. Must be greater than 0. Default: ``0.05``.
        epsilon (float, optional): A small value added to the gradient norm for numerical stability. Default: ``1.0e-12``.
        interval (int, optional): SAM will run once per ``interval`` steps. A value of 1 will
            cause SAM to run every step. Steps on which SAM runs take
            roughly twice as much time to complete. Default: ``1``.
    """

    def __init__(
        self,
        base_optimizer: torch.optim.Optimizer,
        rho: float = 0.05,
        epsilon: float = 1.0e-12,
        interval: int = 1,
        **kwargs,
    ):
        if rho < 0:
            raise ValueError(f'Invalid rho, should be non-negative: {rho}')
        self.base_optimizer = base_optimizer
        self.global_step = 0
        self.interval = interval
        self._step_supports_amp_closure = True  # Flag for Composer trainer
        defaults = {'rho': rho, 'epsilon': epsilon, **kwargs}
        super(SAMOptimizer, self).__init__(self.base_optimizer.param_groups, defaults)

    @torch.no_grad()  # pyright: ignore[reportUntypedFunctionDecorator]
    def sub_e_w(self):
        for group in self.param_groups:
            for p in group['params']:
                if 'e_w' not in self.state[p]:
                    continue
                e_w = self.state[p]['e_w']  # retrieve stale e(w)
                p.sub_(e_w)  # get back to "w" from "w + e(w)"

    @torch.no_grad()  # pyright: ignore[reportUntypedFunctionDecorator]
    def first_step(self):
        grad_norm = self._grad_norm()
        for group in self.param_groups:
            scale = group['rho'] / (grad_norm + group['epsilon'])
            for p in group['params']:
                if p.grad is None:
                    continue
                e_w = p.grad * scale.to(p)
                p.add_(e_w)  # climb to the local maximum "w + e(w)"
                self.state[p]['e_w'] = e_w

    @torch.no_grad()  # pyright: ignore[reportUntypedFunctionDecorator]
    def second_step(self):
        for group in self.param_groups:
            for p in group['params']:
                if p.grad is None or 'e_w' not in self.state[p]:
                    continue
                p.sub_(self.state[p]['e_w'])  # get back to "w" from "w + e(w)"
        self.base_optimizer.step()  # do the actual "sharpness-aware" update

    @torch.no_grad()  # pyright: ignore[reportUntypedFunctionDecorator]
    def step(self, closure=None):
        assert closure is not None, 'Sharpness Aware Minimization requires closure, but it was not provided'
        closure = torch.enable_grad()(closure)  # the closure should do a full forward-backward pass
        loss = None

        if (self.global_step + 1) % self.interval == 0:
            # Compute gradient at (w) per-GPU, and do not sync
            loss = closure(ddp_sync=False)  # type: ignore
            if loss:
                self.first_step()  # Compute e(w) and set weights to (w + (e(w)) separately per-GPU
                loss_dict = {}  # Dummy loss dict to ignore loss logging from w + e(w)
                if closure(loss_dict=loss_dict):  # type: ignore Compute gradient at (w + e(w))
                    self.second_step()  # Reset weights to (w) and step base optimizer
                else:
                    self.sub_e_w()  # If second forward-backward closure fails, reset weights to (w)
        else:
            loss = closure()
            if loss:
                self.base_optimizer.step()

        self.global_step += 1
        return loss

    def _grad_norm(self):
        norm = torch.norm(
            torch.stack([
                p.grad.norm(p=2) for group in self.param_groups for p in group['params'] if p.grad is not None
            ]),
            p='fro',
        )
        return norm


[docs]class SAM(Algorithm): """Adds sharpness-aware minimization (`Foret et al, 2020 <https://arxiv.org/abs/2010.01412>`_) by wrapping an existing optimizer with a :class:`.SAMOptimizer`. SAM can improve model generalization and provide robustness to label noise. Runs on :attr:`.Event.AFTER_LOAD`. Args: rho (float, optional): The neighborhood size parameter of SAM. Must be greater than 0. Default: ``0.05``. epsilon (float, optional): A small value added to the gradient norm for numerical stability. Default: ``1e-12``. interval (int, optional): SAM will run once per ``interval`` steps. A value of 1 will cause SAM to run every step. Steps on which SAM runs take roughly twice as much time to complete. Default: ``1``. Example: .. testcode:: from composer.algorithms import SAM algorithm = SAM(rho=0.05, epsilon=1.0e-12, interval=1) trainer = Trainer( model=model, train_dataloader=train_dataloader, eval_dataloader=eval_dataloader, max_duration="1ep", algorithms=[algorithm], optimizers=[optimizer], ) """ def __init__( self, rho: float = 0.05, epsilon: float = 1.0e-12, interval: int = 1, ): warnings.warn( 'SAM has known issues of weight mismatch when loading from a checkpoint, which will cause an error when resuming without `load_weights_only=True`.', ) self.rho = rho self.epsilon = epsilon self.interval = interval def match(self, event: Event, state: State) -> bool: return event == Event.AFTER_LOAD def apply(self, event: Event, state: State, logger: Optional[Logger]) -> Optional[int]: assert state.optimizers is not None state.optimizers = tuple( SAMOptimizer( base_optimizer=optimizer, rho=self.rho, epsilon=self.epsilon, interval=self.interval, ) for optimizer in ensure_tuple(state.optimizers) ) # Switch to ClosureGradScaler as SAM supports and requires it state.scaler = ClosureGradScaler()