get_sampler#
- composer.utils.dist.get_sampler(dataset, *, drop_last=False, shuffle=False, num_replicas=None, rank=None)[source]#
- Constructs a - DistributedSamplerfor a dataset.- The - DistributedSamplerassumes that each rank has a complete copy of the dataset. It ensures that each rank sees a unique shard for each epoch containing- len(dataset) / get_world_size()samples.- Note - If the - datasetis already sharded by rank, use a- SequentialSampleror- RandomSampler.- Parameters
- dataset (Dataset) โ The dataset. 
- drop_last (bool) โ Whether to trop the last batch. 
- shuffle (bool) โ Whether to shuffle the dataset. 
- num_replicas (int, optional) โ The number of replicas. If - None, defaults to the world size.
- rank (int, optional) โ The rank. If - None, defaults to the global rank.
 
- Returns
- torch.utils.data.distributed.DistributedSampler โ The sampler.