Source code for composer.algorithms.channels_last.channels_last

# Copyright 2022 MosaicML Composer authors
# SPDX-License-Identifier: Apache-2.0

"""ChannelsLast algorithm."""

from __future__ import annotations

import logging
from typing import Optional

import torch

from composer.core import Algorithm, Event, State
from composer.loggers import Logger

log = logging.getLogger(__name__)

__all__ = ['ChannelsLast', 'apply_channels_last']


[docs]def apply_channels_last(model: torch.nn.Module) -> None: """Changes the memory format of the model to `torch.channels_last <https://\\ pytorch.org/tutorials/intermediate/memory_format_tutorial.html>`_. This usually yields improved GPU utilization. Args: model (torch.nn.Module): The model or module to modify. """ model.to(memory_format=torch.channels_last) # type: ignore
[docs]class ChannelsLast(Algorithm): """Changes the memory format of the model to `torch.channels_last <https://\\ pytorch.org/tutorials/intermediate/memory_format_tutorial.html>`_. This usually improves GPU utilization. Runs on :attr:`.Event.INIT``, so it can set the memory format before the model is DDP wrapped. Has no hyperparameters. Example: .. testcode:: from composer.algorithms import ChannelsLast algorithm = ChannelsLast() trainer = Trainer( model=model, train_dataloader=train_dataloader, eval_dataloader=eval_dataloader, max_duration="1ep", algorithms=[algorithm], optimizers=[optimizer] ) """ def __init__(self) -> None: # ChannelsLast takes no arguments pass def match(self, event: Event, state: State) -> bool: del state # unused return event == Event.INIT def apply(self, event: Event, state: State, logger: Logger) -> Optional[int]: del event, logger # unused # TODO: Double check model is moved to cuda with device type apply_channels_last(state.model) log.info(f'Model {state.model.__class__.__name__} changed to channels_last format.')