cutout_batch#
- composer.functional.cutout_batch(input, num_holes=1, length=0.5, uniform_sampling=False)[source]#
See
CutOut
.- Parameters
input (Image | Tensor) โ Image or batch of images. If a
torch.Tensor
, must be a single image of shape(C, H, W)
or a batch of images of shape(N, C, H, W)
.num_holes โ Integer number of holes to cut out. Default:
1
.length (float, optional) โ Relative side length of the masked region. If specified,
length
is interpreted as a fraction ofH
andW
, and the resulting box is a square with side lengthlength * min(H, W)
. Must be in the interval \((0, 1)\). Default:0.5
.uniform_sampling (bool, optional) โ If
True
, sample the bounding box such that each pixel has an equal probability of being masked. IfFalse
, defaults to the sampling used in the original paper implementation. Default:False
.
- Returns
X_cutout โ Batch of images with
num_holes
square holes with dimension determined bylength
replaced with zeros.
Example
from composer.algorithms.cutout import cutout_batch new_input_batch = cutout_batch(X_example, num_holes=1, length=0.25)