Source code for composer.algorithms.cutout.cutout

# Copyright 2022 MosaicML Composer authors
# SPDX-License-Identifier: Apache-2.0

"""Core CutOut classes and functions."""

from __future__ import annotations

import logging
from typing import Any, Callable, Optional, TypeVar, Union

import numpy as np
import torch
from PIL.Image import Image as PillowImage
from torch import Tensor

from composer.algorithms.utils.augmentation_common import image_as_type
from composer.core import Algorithm, Event, State
from composer.loggers import Logger

log = logging.getLogger(__name__)

__all__ = ['CutOut', 'cutout_batch']

ImgT = TypeVar('ImgT', torch.Tensor, PillowImage)


[docs]def cutout_batch(input: ImgT, num_holes: int = 1, length: float = 0.5, uniform_sampling: bool = False) -> ImgT: """See :class:`.CutOut`. Args: input (PIL.Image.Image | torch.Tensor): Image or batch of images. If a :class:`torch.Tensor`, must be a single image of shape ``(C, H, W)`` or a batch of images of shape ``(N, C, H, W)``. num_holes: Integer number of holes to cut out. Default: ``1``. length (float, optional): Relative side length of the masked region. If specified, ``length`` is interpreted as a fraction of ``H`` and ``W``, and the resulting box is a square with side length ``length * min(H, W)``. Must be in the interval :math:`(0, 1)`. Default: ``0.5``. uniform_sampling (bool, optional): If ``True``, sample the bounding box such that each pixel has an equal probability of being masked. If ``False``, defaults to the sampling used in the original paper implementation. Default: ``False``. Returns: X_cutout: Batch of images with ``num_holes`` square holes with dimension determined by ``length`` replaced with zeros. Example: .. testcode:: from composer.algorithms.cutout import cutout_batch new_input_batch = cutout_batch(X_example, num_holes=1, length=0.25) """ X_tensor = image_as_type(input, torch.Tensor) h = X_tensor.shape[-2] w = X_tensor.shape[-1] length = int(min(h, w) * length) mask = torch.ones_like(X_tensor) for _ in range(num_holes): if uniform_sampling is True: y = np.random.randint(-length // 2, high=h + length // 2) x = np.random.randint(-length // 2, high=w + length // 2) else: y = np.random.randint(h) x = np.random.randint(w) mask = _generate_mask(mask, w, h, x, y, length) X_cutout = X_tensor * mask X_out = image_as_type(X_cutout, input.__class__) # pyright struggling with unions return X_out
[docs]class CutOut(Algorithm): """`CutOut <https://arxiv.org/abs/1708.04552>`_ is a data augmentation technique that works by masking out one or more square regions of an input image. This implementation cuts out the same square from all images in a batch. Example: .. testcode:: from composer.algorithms import CutOut from composer.trainer import Trainer cutout_algorithm = CutOut(num_holes=1, length=0.25) trainer = Trainer( model=model, train_dataloader=train_dataloader, eval_dataloader=eval_dataloader, max_duration="1ep", algorithms=[cutout_algorithm], optimizers=[optimizer] ) Args: num_holes (int, optional): Integer number of holes to cut out. Default: ``1``. length (float, optional): Relative side length of the masked region. If specified, ``length`` is interpreted as a fraction of ``H`` and ``W``, and the resulting box is a square with side length ``length * min(H, W)``. Must be in the interval :math:`(0, 1)`. Default: ``0.5``. uniform_sampling (bool, optional): If ``True``, sample the bounding box such that each pixel has an equal probability of being masked. If ``False``, defaults to the sampling used in the original paper implementation. Default: ``False``. input_key (str | int | tuple[Callable, Callable] | Any, optional): A key that indexes to the input from the batch. Can also be a pair of get and set functions, where the getter is assumed to be first in the pair. The default is 0, which corresponds to any sequence, where the first element is the input. Default: ``0``. """ def __init__( self, num_holes: int = 1, length: float = 0.5, uniform_sampling: bool = False, input_key: Union[str, int, Callable, Any] = 0, ): self.num_holes = num_holes self.length = length self.uniform_sampling = uniform_sampling self.input_key = input_key def match(self, event: Event, state: State) -> bool: return event == Event.AFTER_DATALOADER def apply(self, event: Event, state: State, logger: Logger) -> Optional[int]: x = state.batch_get_item(self.input_key) assert isinstance(x, Tensor), 'Multiple tensors not supported for Cutout.' new_x = cutout_batch(x, num_holes=self.num_holes, length=self.length, uniform_sampling=self.uniform_sampling) state.batch_set_item(self.input_key, new_x)
def _generate_mask(mask: Tensor, width: int, height: int, x: int, y: int, cutout_length: int) -> Tensor: y1 = np.clip(y - cutout_length // 2, 0, height) y2 = np.clip(y + cutout_length // 2, 0, height) x1 = np.clip(x - cutout_length // 2, 0, width) x2 = np.clip(x + cutout_length // 2, 0, width) mask[..., y1:y2, x1:x2] = 0. return mask