apply_blurpool#
- composer.functional.apply_blurpool(model, replace_convs=True, replace_maxpools=True, blur_first=True, min_channels=16, optimizers=None)[source]#
Add anti-aliasing filters to strided
torch.nn.Conv2d
and/ortorch.nn.MaxPool2d
modules.These filters increase invariance to small spatial shifts in the input (Zhang 2019).
- Parameters
model (
torch.nn.Module
) โ the model to modify in-placereplace_convs (bool, optional) โ replace strided
torch.nn.Conv2d
modules withBlurConv2d
modules. Default:True
.replace_maxpools (bool, optional) โ replace eligible
torch.nn.MaxPool2d
modules withBlurMaxPool2d
modules. Default:True
.blur_first (bool, optional) โ for
replace_convs
, blur input before the associated convolution. When set toFalse
, the convolution is applied with a stride of 1 before the blurring, resulting in significant overhead (though more closely matching the paper). SeeBlurConv2d
for further discussion. Default:True
.min_channels (int, optional) โ Skip replacing layers with in_channels < min_channels. Commonly used to prevent the blurring of the first layer. Default: 16.
optimizers (Optimizer | Sequence[Optimizer], optional) โ
Existing optimizers bound to
model.parameters()
. All optimizers that have already been constructed withmodel.parameters()
must be specified here so they will optimize the correct parameters.If the optimizer(s) are constructed after calling this function, then it is safe to omit this parameter. These optimizers will see the correct model parameters.
Example
import composer.functional as cf from torchvision import models model = models.resnet50() cf.apply_blurpool(model)