Source code for streaming.base.format.mds.writer

# Copyright 2022-2024 MosaicML Streaming authors
# SPDX-License-Identifier: Apache-2.0

""":class:`MDSWriter` writes samples to ``.mds`` files that can be read by :class:`MDSReader`."""

import json
from typing import Any, Optional, Union

import numpy as np

from streaming.base.format.base.writer import JointWriter
from streaming.base.format.mds.encodings import (get_mds_encoded_size, get_mds_encodings,
                                                 is_mds_encoding, mds_encode)

__all__ = ['MDSWriter']


[docs]class MDSWriter(JointWriter): """Writes a streaming MDS dataset. Args: columns (Dict[str, str]): Sample columns. out (str | Tuple[str, str]): Output dataset directory to save shard files. 1. If ``out`` is a local directory, shard files are saved locally. 2. If ``out`` is a remote directory, a local temporary directory is created to cache the shard files and then the shard files are uploaded to a remote location. At the end, the temp directory is deleted once shards are uploaded. 3. If ``out`` is a tuple of ``(local_dir, remote_dir)``, shard files are saved in the `local_dir` and also uploaded to a remote location. keep_local (bool): If the dataset is uploaded, whether to keep the local dataset directory or remove it after uploading. Defaults to ``False``. compression (str, optional): Optional compression or compression:level. Defaults to ``None``. hashes (List[str], optional): Optional list of hash algorithms to apply to shard files. Defaults to ``None``. size_limit (Union[int, str], optional): Optional shard size limit, after which point to start a new shard. If ``None``, puts everything in one shard. Can specify bytes human-readable format as well, for example ``"100kb"`` for 100 kilobyte (100*1024) and so on. Defaults to ``1 << 26``. **kwargs (Any): Additional settings for the Writer. progress_bar (bool): Display TQDM progress bars for uploading output dataset files to a remote location. Default to ``False``. max_workers (int): Maximum number of threads used to upload output dataset files in parallel to a remote location. One thread is responsible for uploading one shard file to a remote location. Default to ``min(32, (os.cpu_count() or 1) + 4)``. exist_ok (bool): If the local directory exists and is not empty, whether to overwrite the content or raise an error. `False` raises an error. `True` deletes the content and starts fresh. Defaults to `False`. """ format = 'mds' extra_bytes_per_sample = 4 def __init__(self, *, columns: dict[str, str], out: Union[str, tuple[str, str]], keep_local: bool = False, compression: Optional[str] = None, hashes: Optional[list[str]] = None, size_limit: Optional[Union[int, str]] = 1 << 26, **kwargs: Any) -> None: super().__init__(out=out, keep_local=keep_local, compression=compression, hashes=hashes, size_limit=size_limit, extra_bytes_per_sample=self.extra_bytes_per_sample, **kwargs) self.columns = columns self.column_names = [] self.column_encodings = [] self.column_sizes = [] for name in sorted(columns): encoding = columns[name] if not is_mds_encoding(encoding): raise TypeError(f'MDSWriter passed column `{name}` with encoding `{encoding}` ' + f'is unsupported. Supported encodings are {get_mds_encodings()}') size = get_mds_encoded_size(encoding) self.column_names.append(name) self.column_encodings.append(encoding) self.column_sizes.append(size) obj = self.get_config() text = json.dumps(obj, sort_keys=True) self.config_data = text.encode('utf-8') self.extra_bytes_per_shard = 4 + 4 + len(self.config_data) self._reset_cache()
[docs] def encode_sample(self, sample: dict[str, Any]) -> bytes: """Encode a sample dict to bytes. Args: sample (Dict[str, Any]): Sample dict. Returns: bytes: Sample encoded as bytes. """ sizes = [] data = [] for key, encoding, size in zip(self.column_names, self.column_encodings, self.column_sizes): value = sample[key] datum = mds_encode(encoding, value) if size is None: size = len(datum) sizes.append(size) else: if size != len(datum): raise KeyError(f'Unexpected data size; was this data typed with the correct ' + f'encoding ({encoding})?') data.append(datum) head = np.array(sizes, np.uint32).tobytes() body = b''.join(data) return head + body
[docs] def get_config(self) -> dict[str, Any]: """Get object describing shard-writing configuration. Returns: Dict[str, Any]: JSON object. """ obj = super().get_config() obj.update({ 'column_names': self.column_names, 'column_encodings': self.column_encodings, 'column_sizes': self.column_sizes }) return obj
[docs] def encode_joint_shard(self) -> bytes: """Encode a joint shard out of the cached samples (single file). Returns: bytes: File data. """ num_samples = np.uint32(len(self.new_samples)) sizes = list(map(len, self.new_samples)) offsets = np.array([0] + sizes).cumsum().astype(np.uint32) offsets += len(num_samples.tobytes()) + len(offsets.tobytes()) + len(self.config_data) sample_data = b''.join(self.new_samples) return num_samples.tobytes() + offsets.tobytes() + self.config_data + sample_data