Profiler#
- class composer.profiler.Profiler(schedule, trace_handlers, sys_prof_cpu=True, sys_prof_memory=False, sys_prof_disk=False, sys_prof_net=False, sys_prof_stats_thread_interval_seconds=0.5, torch_prof_folder='{run_name}/torch_traces', torch_prof_filename='rank{rank}.{batch}.pt.trace.json', torch_prof_remote_file_name='{run_name}/torch_traces/rank{rank}.{batch}.pt.trace.json', torch_prof_overwrite=False, torch_prof_use_gzip=False, torch_prof_record_shapes=False, torch_prof_profile_memory=True, torch_prof_with_stack=False, torch_prof_with_flops=True, torch_prof_num_traces_to_keep=- 1)[source]#
Composer Profiler.
See the Profiling Guide for additional information.
- Parameters
schedule ((State) -> ProfilerAction) โ
The profiling scheduling function.
It takes the training state and returns a
ProfilerAction
. For convenience, Composer includes acyclic_schedule()
helper.from composer.profiler import Profiler, cyclic_schedule profiler = Profiler( ..., schedule=cyclic_schedule( skip_first=1, wait=0, warmup=1, active=4, repeat=1, ), )
trace_handlers (TraceHandler | Sequence[TraceHandler]) โ Trace handlers which record and save profiling data to traces.
sys_prof_cpu (bool, optional) โ Whether to record cpu statistics. (default:
True
).sys_prof_memory (bool, optional) โ Whether to record memory statistics. (default:
False
).sys_prof_disk (bool, optional) โ Whether to record disk statistics. (default:
False
).sys_prof_net (bool, optional) โ Whether to record network statistics. (default:
False
).sys_prof_stats_thread_interval_seconds (float, optional) โ Interval to record stats, in seconds. (default:
0.5
).torch_prof_folder (str, optional) โ See
TorchProfiler
.torch_prof_filename (str, optional) โ See
TorchProfiler
.torch_prof_remote_file_name (str, optional) โ See
TorchProfiler
.torch_prof_overwrite (bool, optional) โ See
TorchProfiler
.torch_prof_use_gzip (bool, optional) โ See
TorchProfiler
.torch_prof_record_shapes (bool, optional) โ See
TorchProfiler
.torch_prof_profile_memory (bool, optional) โ See
TorchProfiler
.torch_prof_with_stack (bool, optional) โ See
TorchProfiler
.torch_prof_with_flops (bool, optional) โ See
TorchProfiler
.torch_prof_num_traces_to_keep (int, optional) โ See
TorchProfiler
.
- bind_to_state(state)[source]#
Bind the profiler to the
state
.Note
The
Trainer
automatically invokes this method.- Parameters
state (State) โ The training state.
- marker(name, actions=(<ProfilerAction.WARMUP: 'warmup'>, <ProfilerAction.ACTIVE: 'active'>, <ProfilerAction.ACTIVE_AND_SAVE: 'active_and_save'>), record_instant_on_start=False, record_instant_on_finish=False, categories=())[source]#
Create and get an instance of a
Marker
.If a
Marker
with the specifiedname
does not already exist, it will be created. Otherwise, the existing instance will be returned.Note
Profiler.marker()
should be used to construct markers.Marker
should not be instantiated directly by the user.For example:
>>> marker = profiler.marker("foo") >>> marker <composer.profiler.marker.Marker object at ...>
Please see
Marker.start()
andMarker.finish()
for usage on creating markers to measure duration events,Marker.instant()
for usage on creating markers to mark instant events andMarker.counter()
for usage on creating markers for counting.- Parameters
actions (Sequence[ProfilerAction], optional) โ
ProfilerAction
states to record on. Defaults to (WARMUP
,ACTIVE
,ACTIVE_AND_SAVE
).record_instant_on_start (bool, optional) โ Whether to record an instant event whenever the marker is started. Defaults to
False
.record_instant_on_finish (bool, optional) โ Whether to record an instant event whenever the marker is finished. Defaults to
False
.categories (Union[List[str], Tuple[str, ...]], optional) โ Categories for this marker. Defaults to
None
.
- Returns
Marker โ Marker instance.
- record_chrome_json_trace_file(filepath)[source]#
Record trace events in Chrome JSON format in the trace handlers.
See this document for more information about Chrome JSON format.
Note
For custom profiling, it is recommended to use
marker()
instead of manually creating a Chrome JSON trace file. By default, the Composer Profiler will automatically savingMarker
events in Chrome JSON format.This method exists for external profilers that natively record events in Chrome JSON format (such as the
TorchProfiler
). These profilers can use this method to route their profiling traces to the Composer profilertrace_handlers
so events from both the Composer Profiler and external profilers are recorded in the same trace file.
- property trace_handlers#
Profiler trace handlers.