create_gpt2#
- composer.models.create_gpt2(use_pretrained=False, pretrained_model_name=None, model_config=None, tokenizer_name=None, gradient_checkpointing=False)[source]#
- Implements
HuggingFaceModel
to wrap Hugging Face GPT-2 transformers. Logs training and validation perplexity.
From Language Models are Unsupervised Multitask Learners (Radford et al, 2018).
Args:
gradient_checkpointing (bool, optional): Use gradient checkpointing. Default:
False
. use_pretrained (bool, optional): Whether to initialize the model with the pretrained weights. Default:False
. model_config (dict): A dictionary providing a HuggingFace model configuration. tokenizer_name (str, optional): Tokenizer name used to preprocess the dataset and validate the models inputs.{ "_name_or_path": "gpt2", "activation_function": "gelu_new", "architectures": ["GPT2LMHeadModel"], "attn_pdrop": 0.1, "bos_token_id": 50256, "embd_pdrop": 0.1, "eos_token_id": 50256, "initializer_range": 0.02, "layer_norm_epsilon": 1e-05, "model_type": "gpt2", "n_ctx": 1024, "n_embd": 768, "n_head": 12, "n_inner": null, "n_layer": 12, "n_positions": 1024, "reorder_and_upcast_attn": false, "resid_pdrop": 0.1, "scale_attn_by_inverse_layer_idx": false, "scale_attn_weights": true, "summary_activation": null, "summary_first_dropout": 0.1, "summary_proj_to_labels": true, "summary_type": "cls_index", "summary_use_proj": true, "task_specific_params": { "text-generation": { "do_sample": true, "max_length": 50 } }, "transformers_version": "4.16.0", "use_cache": true, "vocab_size": 50257 }
To create a GPT-2 model for language modeling pretraining:
from composer.models import create_gpt2 composer_model = create_gpt2()
- Implements