SAM#
- class composer.algorithms.SAM(rho=0.05, epsilon=1e-12, interval=1)[source]#
Adds sharpness-aware minimization (Foret et al, 2020) by wrapping an existing optimizer with a
SAMOptimizer
. SAM can improve model generalization and provide robustness to label noise.Runs on
Event.INIT
.- Parameters
rho (float, optional) โ The neighborhood size parameter of SAM. Must be greater than 0. Default:
0.05
.epsilon (float, optional) โ A small value added to the gradient norm for numerical stability. Default:
1e-12
.interval (int, optional) โ SAM will run once per
interval
steps. A value of 1 will cause SAM to run every step. Steps on which SAM runs take roughly twice as much time to complete. Default:1
.
Example
from composer.algorithms import SAM algorithm = SAM(rho=0.05, epsilon=1.0e-12, interval=1) trainer = Trainer( model=model, train_dataloader=train_dataloader, eval_dataloader=eval_dataloader, max_duration="1ep", algorithms=[algorithm], optimizers=[optimizer], )