colout_batch#
- composer.functional.colout_batch(sample, p_row=0.15, p_col=0.15, resize_target='auto')[source]#
Applies ColOut augmentation to a batch of images and (optionally) targets, dropping the same random rows and columns from all images and targets in a batch.
See the Method Card for more details.
Example
from composer.algorithms.colout import colout_batch new_X = colout_batch(X_example, p_row=0.15, p_col=0.15)
- Parameters
sample (Tensor | PIL.Image | Tuple[Tensor, Tensor] | Tuple[PIL.Image, PIL.Image]) โ Either a single tensor or image or a 2-tuple of tensors or images. When tensor(s), the tensor must be of shape
CHW
for a single image orNCHW
for a batch of images of shape.p_row (float, optional) โ Fraction of rows to drop (drop along H). Default:
0.15
.p_col (float, optional) โ Fraction of columns to drop (drop along W). Default:
0.15
.resize_target (bool | str, optional) โ If
sample
is a tuple, whether to resize both objects in the tuple. If set to'auto'
, both objects will be resized if they have the same spatial dimensions. Otherwise, only the first object is resized. Default:'auto'
.
- Returns
torch.Tensor | PIL.Image | Tuple[torch.Tensor, torch.Tensor] | Tuple[PIL.Image, PIL.Image] โ A smaller image or 2-tuple of images with random rows and columns dropped.