SyntheticPILDataset#
- class composer.datasets.SyntheticPILDataset(*, total_dataset_size, data_shape=(64, 64, 3), num_unique_samples_to_create=100, data_type=SyntheticDataType.GAUSSIAN, label_type=SyntheticDataLabelType.CLASSIFICATION_INT, num_classes=None, label_shape=None, transform=None)[source]#
Similar to
SyntheticBatchPairDataset
, but yields samples of typeImage
and supports dataset transformations.- Parameters
total_dataset_size (int) โ The total size of the dataset to emulate.
data_shape (List[int]) โ Shape of the tensor for input samples.
num_unique_samples_to_create (int) โ The number of unique samples to allocate memory for.
data_type (str or SyntheticDataType, optional) โ Default:
SyntheticDataType.GAUSSIAN
.label_type (str or SyntheticDataLabelType, optional) โ create. Default:
SyntheticDataLabelType.CLASSIFICATION_INT
.num_classes (int, optional) โ Number of classes to use. Required if
SyntheticDataLabelType
isCLASSIFICATION_INT
orCLASSIFICATION_ONE_HOT
. Default:None
.label_shape (List[int], optional) โ Shape of the tensor for each sample label. Default:
None
.transform (Callable, optional) โ Transform(s) to apply to data. Default:
None
.