composer_resnet#
- composer.models.composer_resnet(model_name, num_classes=1000, weights=None, pretrained=False, groups=1, width_per_group=64, initializers=None, loss_name='soft_cross_entropy')[source]#
Helper function to create a
ComposerClassifierwith a torchvision ResNet model.From Deep Residual Learning for Image Recognition (He et al, 2015).
- Parameters
model_name (str) โ Name of the ResNet model instance. Either [
"resnet18","resnet34","resnet50","resnet101","resnet152"].num_classes (int, optional) โ The number of classes. Needed for classification tasks. Default:
1000.weights (str, optional) โ If provided, pretrained weights can be specified, such as with
IMAGENET1K_V2. Default:None.pretrained (bool, optional) โ If True, use ImageNet pretrained weights. Default:
False. This parameter is deprecated and will soon be removed in favor ofweights.groups (int, optional) โ Number of filter groups for the 3x3 convolution layer in bottleneck blocks. Default:
1.width_per_group (int, optional) โ Initial width for each convolution group. Width doubles after each stage. Default:
64.initializers (List[Initializer], optional) โ Initializers for the model.
Nonefor no initialization. Default:None.loss_name (str, optional) โ Loss function to use. E.g. โsoft_cross_entropyโ or โbinary_cross_entropy_with_logitsโ. Loss function must be in
loss. Default:'soft_cross_entropy'โ.
- Returns
ComposerModel โ instance of
ComposerClassifierwith a torchvision ResNet model.
Example:
from composer.models import composer_resnet model = composer_resnet(model_name='resnet18') # creates a torchvision resnet18 for image classification