cutout_batch#
- composer.functional.cutout_batch(input, num_holes=1, length=0.5, uniform_sampling=False)[source]#
See
CutOut.- Parameters
input (Image | Tensor) โ Image or batch of images. If a
torch.Tensor, must be a single image of shape(C, H, W)or a batch of images of shape(N, C, H, W).num_holes โ Integer number of holes to cut out. Default:
1.length (float, optional) โ Relative side length of the masked region. If specified,
lengthis interpreted as a fraction ofHandW, and the resulting box is a square with side lengthlength * min(H, W). Must be in the interval \((0, 1)\). Default:0.5.uniform_sampling (bool, optional) โ If
True, sample the bounding box such that each pixel has an equal probability of being masked. IfFalse, defaults to the sampling used in the original paper implementation. Default:False.
- Returns
X_cutout โ Batch of images with
num_holessquare holes with dimension determined bylengthreplaced with zeros.
Example
from composer.algorithms.cutout import cutout_batch new_input_batch = cutout_batch(X_example, num_holes=1, length=0.25)