Source code for composer.algorithms.seq_length_warmup.seq_length_warmup

# Copyright 2021 MosaicML. All Rights Reserved.

"""Core code for sequence length warmup."""

import textwrap
from math import ceil
from typing import Dict, Mapping, Optional

import torch

from composer.core import Algorithm, Event, State
from composer.core.time import TimeUnit
from composer.core.types import Batch
from composer.loggers import Logger
from composer.models import ComposerTransformer
from composer.utils import ensure_tuple

__all__ = ["SeqLengthWarmup", "set_batch_sequence_length"]


[docs]def set_batch_sequence_length(batch: Dict[str, torch.Tensor], curr_seq_len: int, truncate: bool = True) -> Batch: """Set the sequence length of a batch. Changes the sequence length of all tensors in the provided dictionary to ``curr_seq_len``, by either truncating the tensors (``truncate=True``) or reshaping the tensors to create new examples from the extra tokens (``truncate=False``). .. note:: The schedule for ``curr_seq_len`` over training time should be managed outside of this function. .. note:: Variable input lengths can create CUDA OOM errors. To avoid this, we follow `PyTorch notes <https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html#pre-allocate-memory-in-case-of-variable-input-length>`_ and pre-allocate the memory with a blank forward and backward pass. Args: batch (Dict[str, Tensor]): The input batch to the model, must be a dictionary. curr_seq_length (int): The desired sequence length to apply. truncate (bool, optional): Truncate sequences early, or reshape tensors to create new examples out of the extra tokens. Default: ``True``. Returns: Dict[str, Tensor]: a Mapping of input tensors to the model, where all tensors have curr_seq_len in the second dimension. Example: .. code-block:: import composer.functional as cf for epoch in range(num_epochs): for X, y in train_loader: X = cf.set_batch_sequence_length(X, sequence_length) y_hat = model(X) loss = loss_fn(y_hat, y) """ assert isinstance(batch, Mapping) if truncate: for k in batch.keys(): batch[k] = batch[k][:, :curr_seq_len] else: # ensure new tensor shape is divisible by curr_seq_len input_ids = batch['input_ids'].view(-1) tensor_len = (input_ids.shape[0] // curr_seq_len) * curr_seq_len input_ids = input_ids[:tensor_len] input_ids = input_ids.view(-1, curr_seq_len) batch['input_ids'] = input_ids for k, v in batch.items(): if k == "input_ids": continue v = v.view(-1) v = v[:tensor_len] batch[k] = v.view(-1, curr_seq_len) return batch
[docs]class SeqLengthWarmup(Algorithm): """Progressively increases the sequence length during training. Changes the sequence length of all tensors in the input batch. The sequence length increases from ``min_seq_length`` to ``max_seq_length`` in steps of ``step_size`` during the first ``duration`` fraction of training. The sequence length is then kept at ``max_seq_length`` for the rest of training. Tensors are either truncated (``truncate=True``) or reshaped to create new examples from the extra tokens (``truncate=False``). This algorithm runs on :attr:`~composer.core.event.Event.AFTER_DATALOADER` to modify the sequence length of a batch of data, after the model and data have been moved to accelerators. .. note:: ``step_size`` should be a `multiple of eight <https://developer.nvidia.com/blog/optimizing-gpu-performance-tensor-cores/>`_ for optimal throughput on NVIDIA GPUs .. note:: Variable input lengths can create CUDA OOM errors. To avoid this, we follow `PyTorch notes <https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html#pre-allocate-memory-in-case-of-variable-input-length>`_ and pre-allocate the memory with a blank forward and backward pass. See the :doc:`Method Card </method_cards/seq_length_warmup>` for more details. Example: .. code-block:: from composer.algorithms import SeqLengthWarmup from composer import Trainer seq_length_warmup = SeqLengthWarmup(duration=0.5, min_seq_length=8, max_seq_length=1024, ste_size=8, truncate=False) trainer = Trainer(model=model, train_dataloader=train_dataloader, max_duration="1ep", algorithms=[seq_length_warmup]) Args: duration (float, optional): Fraction of total training for sequential length learning. Default = ``0.3``. min_seq_length (int, optional): Minimum sequence length to start the warmup. Default = ``8``. max_seq_length (int, optional): Maximum sequence length to stop the warmup. Default = ``1024``. step_size (int, optional): Step size of sequence length. Default = ``8``. truncate (bool, optional): Truncate tensors or reshape extra tokens to new examples. Default = ``True``. """ def __init__( self, duration: float = 0.3, min_seq_length: int = 8, max_seq_length: int = 1024, step_size: int = 8, truncate: bool = True, ): self.duration = duration self.min_seq_length = min_seq_length self.max_seq_length = max_seq_length self.step_size = step_size self.truncate = truncate if self.duration < 0 or self.duration > 1: raise ValueError(f'Duration must be getween 0 and 1, got: {self.duration}') if self.max_seq_length < self.min_seq_length: raise ValueError(f'max_seq_length={self.max_seq_length} must be ' f'greater than min_seq_length={self.min_seq_length}') self._activated = False self._original_model = None def match(self, event: Event, state: State) -> bool: return (event == Event.INIT and self._original_model is None) or event == Event.AFTER_DATALOADER def apply(self, event: Event, state: State, logger: Logger) -> Optional[int]: if event == Event.INIT: if not isinstance(state.model, ComposerTransformer): raise RuntimeError( textwrap.dedent(f"""\ {type(self).__name__} requires state.model to be of type {ComposerTransformer.__name__}, not of type {type(state.model)}""" )) if state.train_dataloader.batch_size is None: raise RuntimeError("Sequence Length Warmup algorithm requires constant batch size.") self._original_model = state.model return # in order to avoid OOMs, we do a forward and a backward pass on a dummy input. if not self._activated: # ensure that input_ids is a valid model input. since we don't need the # results, we don't use all inputs. assert self._original_model is not None, "original model should be set on Event.INIT" model_inputs = self._original_model.get_model_inputs() if 'input_ids' not in model_inputs: raise RuntimeError("'input_ids' must be in model inputs") if 'labels' not in model_inputs: raise RuntimeError("'labels' must be in model inputs") # create fake inputs vocab_size = self._original_model.config.vocab_size # simplifying assumption: Composer doesn't support model-parallelism, # so the first parameter's device is likely the same device for # all of the parameters device = next(state.model.parameters()).device per_gpu_macrobatch = state.train_dataloader.batch_size if per_gpu_macrobatch is None: raise RuntimeError("Sequence Length Warmup algorithm requires constant batch size.") per_gpu_batch = ceil(per_gpu_macrobatch / state.grad_accum) input_ids = torch.randint(low=0, high=vocab_size - 1, size=(per_gpu_batch, self.max_seq_length), device=device).long() labels = input_ids.clone() attn_mask = torch.ones_like(labels) model_inputs = { "input_ids": input_ids, "labels": labels, "attention_mask": attn_mask, } # start by running a forward and backward pass # of the maximum sequence length to allocate cache. with state.precision_context: outputs = state.model.forward(model_inputs) loss = self._original_model.loss(outputs, model_inputs) # since use_grad_scaling is in the Trainer, and we # don't care about the loss values, skip scaling for loss_item in ensure_tuple(loss): loss_item.backward() for optimizer in state.optimizers: optimizer.zero_grad() self._activated = True if state.max_duration.unit == TimeUnit.EPOCH: num_optimization_steps = state.steps_per_epoch * state.max_duration.value elif state.max_duration.unit == TimeUnit.BATCH: num_optimization_steps = state.max_duration.value else: raise NotImplementedError( textwrap.dedent("""\ To use sequential length warmup, the max_duration must be in epochs or batches. Specifying the `max_duration` in tokens or samples for use with sequential length warmup will be supported in a future Composer release. See https://github.com/mosaicml/composer/issues/226.""")) num_warmup_steps = int(num_optimization_steps * self.duration) # in batches # assume the full sequence length is the unaltered sequence length num_update_steps = (self.max_seq_length - self.min_seq_length) // self.step_size update_every_n_steps = num_warmup_steps // num_update_steps curr_seq_len = self.step_size * (int(state.timer.batch) // update_every_n_steps) curr_seq_len = max(curr_seq_len, self.min_seq_length) curr_seq_len = min(curr_seq_len, self.max_seq_length) state.batch = set_batch_sequence_length(state.batch_dict, curr_seq_len, self.truncate) batch_size = state.batch_dict['input_ids'].shape[0] logger.data_batch({ 'seq_length_warmup/curr_seq_len': curr_seq_len, 'seq_length_warmup/curr_bs': batch_size, })