DeepLabV3Hparams#
- class composer.models.DeepLabV3Hparams(initializers=<factory>, num_classes=None, backbone_arch='resnet101', backbone_weights=None, use_plus=True, sync_bn=True, ignore_index=-1, cross_entropy_weight=1.0, dice_weight=0.0)[source]#
- YAHP interface for
- Parameters
num_classes (int) โ Number of classes in the segmentation task.
backbone_arch (str, optional) โ The architecture to use for the backbone. Must be either [
'resnet50','resnet101']. Default:'resnet101'.backbone_weights (str, optional) โ If specified, the PyTorch pre-trained weights to load for the backbone. Currently, only [โIMAGENET1K_V1โ, โIMAGENET1K_V2โ] are supported. Default:
None.use_plus (bool, optional) โ If
True, use DeepLabv3+ head instead of DeepLabv3. Default:True.sync_bn (bool, optional) โ If
True, replace all BatchNorm layers with SyncBatchNorm layers. Default:True.initializers (List[Initializer], optional) โ Initializers for the model.
[]for no initialization. Default:[].