Source code for composer.core.precision

# Copyright 2022 MosaicML Composer authors
# SPDX-License-Identifier: Apache-2.0

"""Enum class for the numerical precision to be used by the model."""

import contextlib
import os
from typing import Generator, Union

import torch

from composer.utils import StringEnum

__all__ = ['Precision', 'get_precision_context']


[docs]class Precision(StringEnum): """Enum class for the numerical precision to be used by the model. Attributes: FP32: Use 32-bit floating-point precision. Compatible with CPUs and GPUs. AMP_FP16: Use :mod:`torch.cuda.amp` wih 16-bit floating-point precision. Only compatible with GPUs. AMP_BF16: Use :mod:`torch.cuda.amp` wih 16-bit BFloat precision. """ FP32 = 'fp32' AMP_FP16 = 'amp_fp16' AMP_BF16 = 'amp_bf16'
[docs]@contextlib.contextmanager def get_precision_context(precision: Union[str, Precision]) -> Generator[None, None, None]: """Returns a context manager to automatically cast to a specific precision. Args: precision (str | Precision): Precision for the context """ precision = Precision(precision) if precision == Precision.FP32: if torch.cuda.is_available(): with torch.cuda.amp.autocast(False): yield else: # Yield here to avoid warnings about cuda not being available yield elif precision == Precision.AMP_FP16: # Retain compatibility with PyTorch < 1.10 with torch.cuda.amp.autocast(True): yield elif precision == Precision.AMP_BF16: if torch.cuda.is_available(): with torch.cuda.amp.autocast(enabled=True, dtype=torch.bfloat16): yield else: os.environ['XLA_USE_BF16'] = '1' yield else: raise ValueError(f'Unsupported precision: {precision}')